Three-dimensional Cancer Risk Score Mapping with MRI to Improve Early Detection and Individualised Treatment Planning for Men with Prostate Cancer

Elisa Roccia¹, Radhouene Neji¹,², Vicky Goh¹,³, Isabel Dregely¹

¹ School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
² MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
³ Department of Cancer Imaging, King’s College London, London, UK

PROSTATE CANCER
- Growth of abnormal cells in the prostate gland
- Multifocal disease
- Often asymptomatic

UK STATISTICS
- Lifetime risk
 - > 45,000 Cases/year
 - > 11,000 Deaths/year

MRI TECHNICAL CHALLENGES
- Images are two-dimensional and lack fine detail: could miss small cancers
- Long and complex acquisition with multiple, separate images: inefficient
- Relies on radiology expertise to detect and score cancer: subjective diagnosis

We designed a novel, efficient, optimised MRI method to address these challenges

- Single, robust, “push-button” MRI scan
- Simultaneously encodes morphological & functional tissue information in 3D
 - More accurate, faster data
- Extracts quantitative MRI biomarkers “T₂” and “ADC”
- Encode key cancer features
- Apply advanced image processing algorithm
 - Patient-specific and objective cancer risk score map

3D CANCER RISK SCORE MAP

Patient-specific and objective cancer risk score map

UK STATISTICS
- Lifetime risk
 - > 45,000 Cases/year
 - > 11,000 Deaths/year

MRI TECHNICAL CHALLENGES
- Images are two-dimensional and lack fine detail: could miss small cancers
- Long and complex acquisition with multiple, separate images: inefficient
- Relies on radiology expertise to detect and score cancer: subjective diagnosis

MRI TECHNICAL CHALLENGES
- Images are two-dimensional and lack fine detail: could miss small cancers
- Long and complex acquisition with multiple, separate images: inefficient
- Relies on radiology expertise to detect and score cancer: subjective diagnosis

MRI CANCER RISK SCORE MAP

Aggressive cancer
Healthy prostate

IMPART
- To improve patient reporting workflows
- To help NHS towards personalised precision diagnostic and treatment planning
- Applications:
 - Diagnosis
 - Biopsy-guidance
 - Treatment planning

ACKNOWLEDGEMENTS
This work was supported by the King’s College London & Imperial College London EPSRC Centre for Doctoral Training in Medical Imaging [EP/L015226/1]; the Wellcome EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z]; the King’s Health Partners Research and Development Challenge Fund; TOHETI; NIHR BRC; GSTT/KCL BRC; CRUK/EPSRC Cancer Centre; Siemens Healthineers.